

Spray Wisely:

Timing and techniques to reduce drift and maintain efficacy

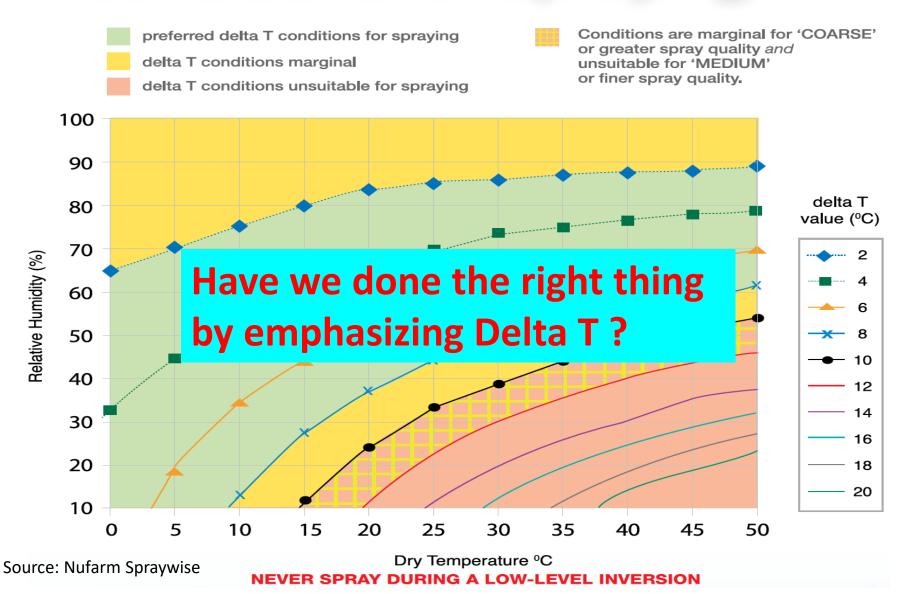
Bill Gordon, Spray Application Specialist - Nufarm Australia

Take home messages:

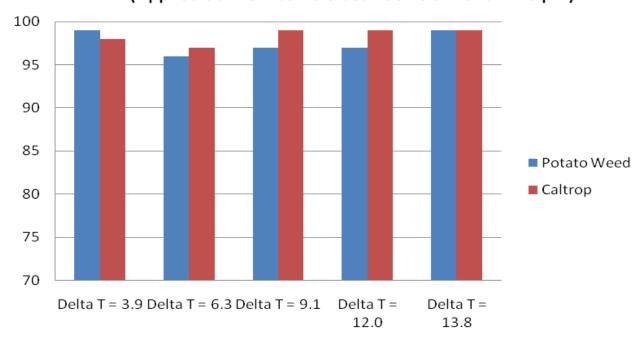
Sprayer setup and operation dictates how much product will be left in the air, the conditions determine where the airborne fraction will go.

Air movement at night and around sunrise is very different to air movement during the day

Different types of nozzle can respond differently to the tank mix


Assessing spray deposits is tool for improving spray coverage and efficacy

Main factors that influence spray drift risk


- Conditions at the time of spraying
- Spray Quality / Nozzle choice
- Sensitivity of the target
- Product choice and Rate (including water volume)
- Adjuvant Choice
- Boom Height
- Spraying Speed

Selecting the right delta T conditions for spraying

Impact of Delta T on efficacy

% Brownout with 750 mL/ha Roundup DST at 7DAA (Applied at five intervals between 8 am and 1.45 pm)

Potato weed and caltrop on day of spraying (15-Jan-10)

- In choosing a day to conduct this trial (that is, a day when a wide range of Delta T readings would be achieved over a reasonable time period), the Spraywise Decisions website was used. The predicted Delta Ts, temperatures and humidity readings on the day the trial was applied were accurately predicted by Spraywise Decisions.
- For more information visit www.spraywisedecisions.com.au

Control (% desiccation or stunting) of heliotrope using Glyphosate / Phenoxy Mix versus Sprayseed®.

Mintaro, S.A. Feb,2012 Mid-Afternoon (Delta T = 14.5-15.5)

Water Rate (L/ha)	Nozzle Type and Size	Spray Quality	Spray % dess		Glyphosate/ Phenoxy Mix % Stunting		
(L/Tia)		Quality	16	24	16	24	
			DAT	DAT	DAT	DAT	
	Untreated Control		0.0	0.0	0.0	0.0	
	TurboTeejet TT11002-VP (forward)	M	87.5	92.5a	27.5	72.5ab	
	TeeJet AIXR11002VP	С	88.8	98.0a	30.0	78.8a	
60 L/ha	TurboTwinJet TTJ60-11002VP	С	88.8	94.0a	30.0	68.8ab	
	TeeJet AITTJ60-11002VP	С	92.5	93.8a	27.5	70.0ab	
	TurboTeejet Induction TTI11002-VP (alternating forward and backward)	XC	72.5	82.5b	25.0	63.8b	
	Untreated Control		0.0	0.0	0.0	0.0	
	TurboTeejet TT110-025-VP (forward)	М	92.0	94.5a	23.8	63.8b	
	TeeJet AIXR110025-VP	С	89.5	95.5a	25.0	68.8ab	
90 L/ha	TurboTwinJet TTJ60-110025VP	С	85.0	95.5a	38.8	72.5ab	
	Teejet AITTJ60-11002VP	С	94.8	96.8a	18.8	61.2b	
	TurboTeejet Induction TTI1102-VP (alternating forward and backward)	XC	86.0	92.3a	21.2	66.2b	
	LSE	0.05)	8.6	5.9	8.3	11.5	

& SprayWise 24 HOUR RISK PROFILE FOR SUMMER SPRAYING

Windspeeds must be above 4 km/h and less than 15-20 km/h (refer to label) blowing away from sensitive areas

Medium spray quality: Delta T: 2-10 Coarse spray quality: Delta T: 2-12

To start spraying, the sun should be about 20 degrees above the horizon, and wind speed and direction consistent for 30-40 minutes

Likely to be the best conditions for spraying

Be aware of higher evaporation risk and thermal activity after midday. Monitor plant stress.

> Prepare to STOP all spraying if windspeeds start to drop

Monitor conditions closely

Consider using larger spray quality, higher water rates and managing evaporation with suitable adjuvants (ie. Collide, Activator)

Windspeed should be above 4-5 km/h after Sunrise to start spraying

NIDDAL

CAUTION REQUIRED

Surface Inversion onset likely. Wind must be above 11-12 km/h

Often spraying into the early evening is possible in summer when air movement has continued to mix the air and prevent a surface temperature inversion forming.

Pay very close attention to changes in wind speed and wind direction through out the evening.

Only use XC or UC spray quality, reduce spraying speed and boom height to minimise risk of droplets remaining airborne.

Spraying can only occur if the operator can be certain that a surface temperature inversion is not present.

The safest option is not to spray during this period.

*EXTREME CAUTION REQUIRED

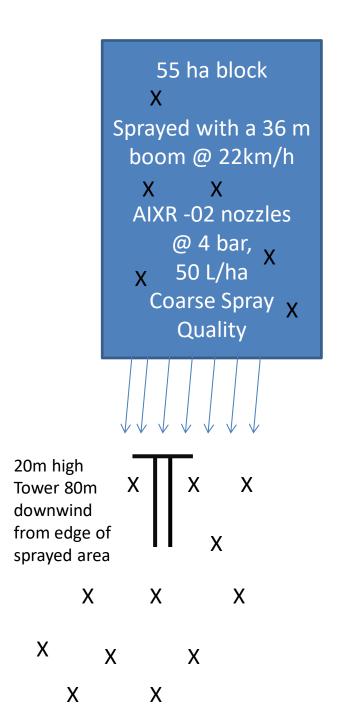
High inversion risk

Dangerous air movement

Plan NOT TO SPRAY during this period

Later in the evening air movement can become too unpredictable for safe spraying.

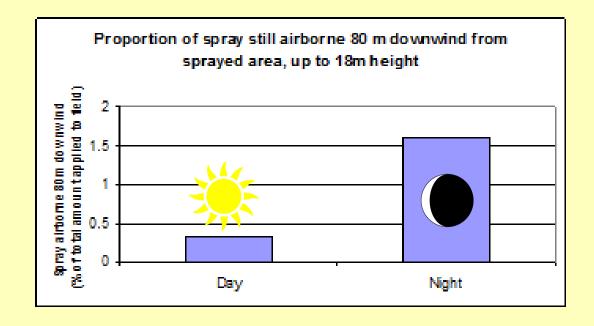
Often by 10-11 pm it has become unsafe.



Drift Study Night vs Day Spraying Millee NSW,Feb, 2011

GRDC and **CRDC** funded research.

Night Time Spraying conducted around 2.30am


 Daytime spraying conducted around 7.30am

Amount of product remaining airborne at 80 metres downwind from the sprayed field

Night vs Day (Feb 2011, Millee)

	Wind Speed (km/hr)	Wind Direction (°)	Temperature (°C)	Relative Humidity (%)	Stability Ratio
Night	11.6	19	25.5	64	0.26
Day	18.3	4	28.7	61	-0.29

Nozzle Selection and Adjuvant Choice

Your choice of nozzle and spray quality has a big influence on how much product could remain in the air.

• Fine spray quality approximately 40-50% less than 150 microns

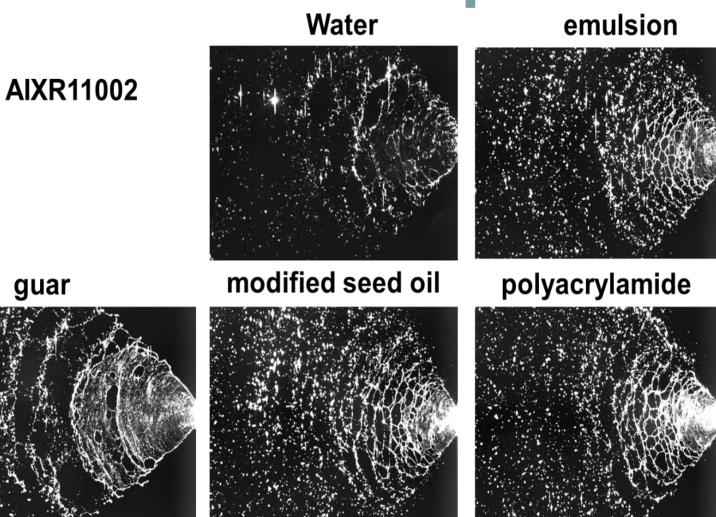
• **Medium spray quality** approximately 20% less than 150 microns

• Coarse spray quality approximately 10% less than 150 microns

• Very Coarse quality approximately 5 % less than 150 microns

• Extremely Coarse spray quality approx. <2-3 % less than 150 microns

Adjuvant choice can help, but nozzle has the biggest impact!



There are a lot of nozzles out there.....

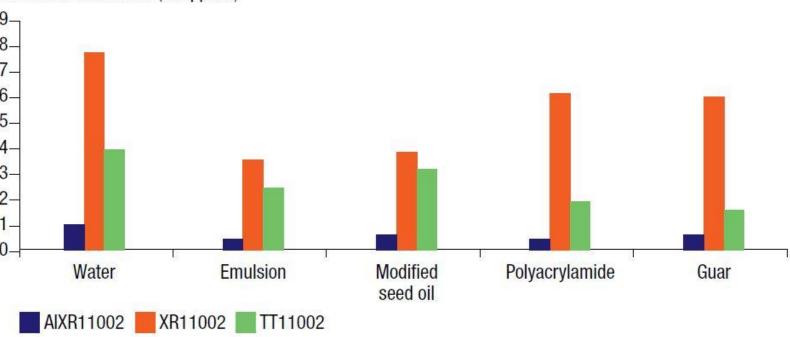

Impact of formulation and/or adjuvants on nozzle outputs

FIGURE 1 Drift in a wind tunnel for three nozzles and various adjuvants.

Drift at 2m downwind (% applied)

Note: the amount of spray drift from the AIXR (air-induction) remained relatively consistent in this experiment, whereas the tank mix had a much greater effect on the standard XR nozzle and the TT.

SOURCE: UNIVERSITY OF QUEENSLAND CENTRE FOR PESTICIDE APPLICATION AND SAFETY

TeeJet

available

in this

UC

Pro-Ortfice (RUN ABOVE 1.5-2 BAR)

Hard

Too.let Too.let

TeeJet

avaliable

in this

NOZZLE SELECTION GUIDE*

not

NAME OF

Hardi Lechler TeeJet

avaliable available available available available in this in this in this in this

nim

nigre.

ARAG

C M Albuz

2.0

not 3.0 not evaluble in this size 6.0 size

8.0

5.0

6.0 7.0

6.0

3.0 4.0 5.0 6.0

7.0

TeeJet

Lechler

=	ender e	E31	ARCH & IT EXERTS LAT	-		
			Extend	ded Rong	e Fons	
BRAN	D		TeeJet	ToeJet	Hardi	Lechler
MODE	L		XR-110	XR-80	P-810	AD-110
			2017	2017	2011	2016
Nozzie Stze	BAR		8			
	15		r	F	г	\vdash
	2.0		r	F	P	
	3.0		r	г	г	not
01	4.0		W	F	P P	available in this
Orange	5.0				г	nizo
	7.0	ŀ				
	8.0	ŀ	_			\vdash
	15		F	F	M	м
	2.0	ŀ	-	r	r	M
	10	ŀ	-	F	r	M
015	4.0	ŀ	-	-	r	- 1
GREEN	5.0	ŀ			r	-
uncen	6.0	ŀ	_			-
	7.0	1				
	8.0	ŀ				\vdash
	15		r	F	м	С
	2.0	ı		F	м	м
	3.0	ı	r	F	F	м
02	4.0	ì	r	F	F	м
YELLOW	5.0				F	F
	6.0					F
	7.0					
	8.0					
	15		М	м	м	
	2.0		F	F	М	
	3.0		- 1	F	М	not
025	4.0		F	F	F	avallable
LILAC	5.0	L			F	in this size
	6.0					1000
	7.0					\vdash
_	8.0					
	15	ŀ	M	M	M	C
	2.0		-	P.		
03	10 40	ŀ	-	-	M	м
BLUE	5.0	ŀ	-	-	M	м
ococ.	6.0	ŀ			-	. r
	7.0	ŀ				
	8.0	ŀ	\vdash			\vdash
	15		м	м	W	С
	2.0	1	м	M	M	č
	3.0	ı	м	м	м	С
04	4.0	1	F	F	м	м
04 RED	5.0				м	м
	6.0					м
	7.0					
	8.0					
	15		м	м	С	
	2.0		М	м	С	
	3.0		М	M	М]
OS BROWN	4.0		М	F	м	data not
BROWN	5.0	ļ.			м	avallable
	6.0	ŀ				
	7.0	ļ.				
	8.0			I		ı 7

						8.0												M
			M	C		1.5		VC	С		UC		С		VC	UC	XC	WE
	M	м	M	ш	1 1	20		- 6	-	W	W	ı	-	ı	-	W.	W.F.	,
	F	М	M															
	F	м	M															
			M														1	
															t			
				L			.									_		
				L											١ - ١	- 1		
			M															
	м	м	M				- N											V
	М	М	M					,										
	м	м	M	L												_		
			M															
				L														
			C											_				
		м	C															
	not	М	M	L														
do	avallable	м	M	L								_						
	in this		M	L														
	stre			L				4		7 1					E			
				L														
				L														
			C															

TeeJet Lechier Agrotop

Hypro

ovaliable ovaliable in this

2.0

3.0

4.0

6.0

4.0

7.0

M 5.0

in this

not	VC	VC	VC		VC	XC	not	UC
tiable	c	u	VC	С	С	ЖE	avaliable	300
18th					C	VC	in this	XC
dro	C	С	С	С	C	VC	nize	300
	0	C	С	С	C			WC
	м	С	C	C	C	C		
XC.							UC	UC
VC						UC	UC	UC
c	VC	VC	VC		VC	ЖC	UC	UC
c	c	С	VC	С	VC	ХC	VC	UC
M		С	С	С	VC	VC	VC	XC
м	С	С	С	С	VC	VC	VC	300
M	c	C	С	C	VC	c	С	WC
	6	С	С	С	VC	С		
XC.							UC	UC
VC						UC	UC	UC
c	VC	VC			VC	ЖE	XIC	UC
c	VC	С	not ovaliable	WC	VC	ЖC	VC	UC
м	VC	С	in this	WC	VC	VC	VC	300
м	С	С	1010	VC	VC	VC	VC	300
M		С	1	WE	VC	c	С	XC
		С		WC	VC	С		
UC							UC	UC
KC.						UC	UC	UC
VC	VC	ЖC	VC		VC	ХC	UC	UC
С	VC	VC	WC	WC	VC	VC	XC	UC
С	VC	С	VC	С	VC	VC	XC	UC
м	С	С	VC	С	VC	VC	VC	300
М		С	VC	С	VC	c	VC	300
	С	С	С	С	VC	С		
uc							UC	UC
XC						UC	UC	UC
VC	XE	ЖC	not		VC	ЖE	UC	UC
C	VC	VC	ovaliable	WC	VC	VC	XIC	UC
С	VC	VC	in this	WE	VC	VC	XC	XC
м	VC	VC	nizre	WC	VC	VC	VC	300
M	C	VC		C	VC	C	VC	XXC
	c	VC		С	VC	С		
uc								UC
XC						UC	UC	UC
VC	XE	ЖC	not	not	VC	ХC	UC	UC
VC	XE	ЖC	ovaliable	avallable	VC	VC	ж	UC
С	VC	VC	in this	in this	VC	VC	XC	UC

VC

High Pressure Air Induction (RUN ABOVE 3-4 BAR)

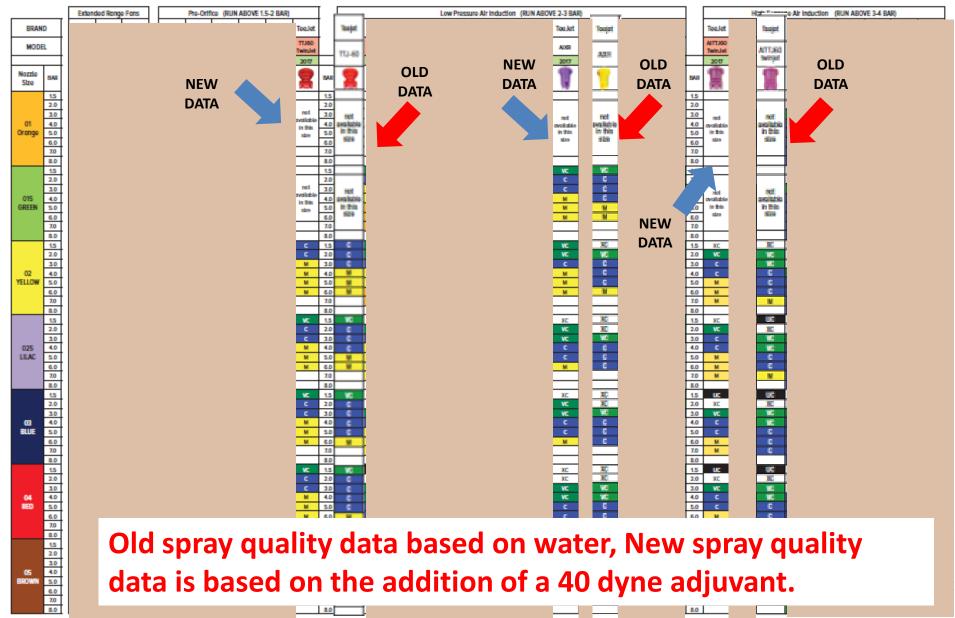
data not ovallable Hord

VC VC Teelet

available available

in this

in this


ARAG

ULTRA

BUTTON MANAGE OF THE STATE OF T

GRDC

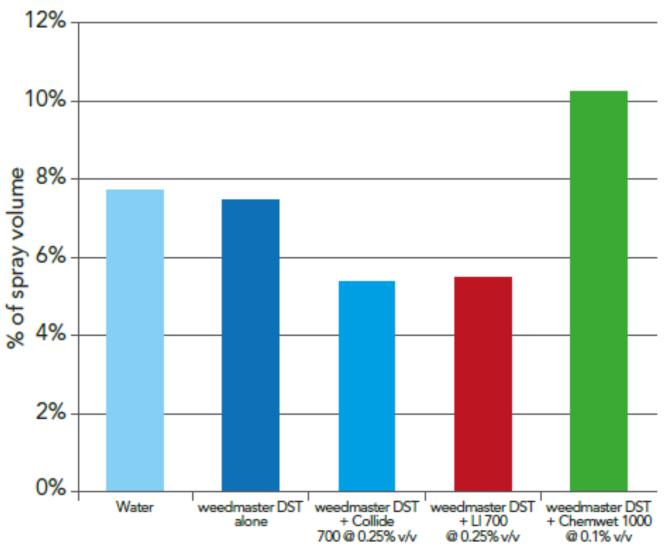
NOZZLE SELECTION GUIDE*

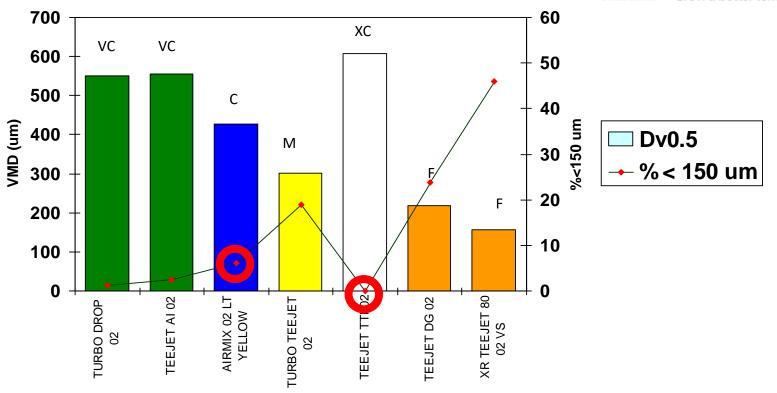
NOZZLE SELECTION GUIDE*

		Exten	ded Rang	e Fons		Pre-Ortf	ice (RUN	ABOVE 1.	5-2 BAR)		[L	ow Press	ure Air Ind	duction (F	RUN ABOV	E 2-3 BAS	2)]		Н	gh Pressi	ure Air in	duction (RUN ABO	VE 3-4 BA	R)	
BRAN	ND	TeeJet	ToeJet	Hardi	Lechier	TeeJet	Albuz	Hardi	ToeJet	Toolet	[[Нурго	TeeJet	Lechier	Agrotop	Нурго	Hordi	Hardi	Lechier	ToeJet	Нурго	Belle- ricay	ARAG	Albuz		TeeJet	Lechler	Albuz	ARAG	Agrotop	Hardi	Toojat	TeeJet	ToeJet
MOD	EL	XR-110	XR-80	P-810	AD-110	DG-110	ADI-110	LD-110	TT-110	TTJ60 Twirulet		Guardian Air Twin	AI3070 Twin,let	IDI6420	Airmix	Guardian Air	Ministrations Statement	Minidat	IDKT beinjet	ADDR	ULD-120	bubble-je	CPA	CM	1	AITTJ60 TwinJet	ID	AM	CPA- ULTRA	Turbo- drop TD	Injet	N	TTISO TwinJet	m
		2017	2017	2011	20%	2017	2016	2011	2017	2017		2015	2017	20%	2012	2015	2011	2011	2016	2017	2016	2017	20%	2016		2017	2015	2016	20%	2012	2011	2017	2017	2017
Nozzie Stze	BAR	8				~	(2	2	BAR			T	0=1	Ŧ	7	*	T			7			BAR	(III	1	1	Ţ	8		1	P	1
	15	F	г	г				M	С		1.5											ЖE	300		15							-	\Box	\Box
	3.0	-	-	P P		1	M	M	M	net	3.0			C	M	-						VC C	7		3.0		С	VC	VC		VC			1 I
01	4.0	W	r	r	not avallable	not available	-	м	7	avallable	4.0	not available	not ovalishie	м	r	not available	not avaliable	not ovaliable	not ovalable	not ovolichie	not available	è	· ·	not ovalable	4.0	not ovalable	è	c	VC	datanet	VC	not available	not ovaliable	not ovoliable
Orange	5.0			r	in this	in this		F	F	in this size	5.0	in this	in this	М	- 1	in this	in this	in this	in this	in this	in this	С	С	in this	5.0	in this	C	C	С	avallable	WC	in this	in this	in this
	6.0	<u> </u>	-	\vdash	xize	stre	<u> </u>	-	r		6.0	sire	nize	r	r	size	stre	1019	nim	10.00	nine	M	7	sizo	6.0	sizo	C	C	C		C	sire	size	nize
	7.0 8.0	\vdash	-	\vdash	\vdash	-	-	_	_	\vdash	7.0 8.0			 		-			_			м	M		7.0 8.0	-	M	C	C		C	-	$\vdash \vdash$	$\vdash\vdash$
	15	T.	Г	м	м			М	С		1.5		VC	С		UC		С		VC	UC	XC	VC	VC	15			•	_		_	\vdash		UC
	2.0	F	F	r	M	м	M	М	м		2.0		С	С	XC	XC		С		C	XE	ХC	7	VC	2.0							UC	\Box	UC
	3.0	F	F	г	М	F	м	М	М	nat available	3.0	not	м	С	C	С	net	С	not	С	VC	VC	С	VC	3.0	not	WC	VC	WC		VC	ХC	not	UC
O15 GREEN	5.0	r	F	r	-	г	м	M	7	In this	4.0 5.0	available in this	M	M	C	M	available in this	M	avalable in this	M	C	C	C		4.0 5.0	ovalable in this	C	C	VC C	C	C C	XC VC	ovaliable in this	XC XC
UNILLI	6.0	\vdash	_	-	-		_	-	-	xtre	6.0	sire	r	-	М	м	16200	- M	nino	м	м	è	c		6.0	120	è	-	è	c	è	VC	nize	XC
	7.0										7.0		F			м			1		М	С	C		7.0		c	C	C	C	c	c		WC
	8.0										8.0										М		М		8.0		м	C	С	С	С	C		
	2.0	-	F	M	E M		W	M	c	C	1.5 2.0		AC.	VC C	_	VC	VC C	VC C		VC VC	XE	C	7	VC	1.5	NC NC	\vdash			-			UC	UC
	3.0	-	F		M	M	M	M	м	м	3.0	C M	C C	c	c	м	c	c		C	C	·	C	VC C	3.0	C	VC	VC	VC		VC	XC	UC	UC
02	4.0		F	r	M	м	м	M	м	м	4.0	м	м	М	м	м	č	č	not ovalable	м	c	è	c	_	4.0	č	c	c	VC	С	VC	XC	VE	UC
YELLOW				r	F			М	F	М	5.0	М	M	М	М	м	м	м	in this	М	м	м	С		5.0	М	C	C	С	С	VC	VC	VC	XXC
	6.0				F				F	М	6.0	М	P	М	М	м	м	м	nizo	М	м	м	С		6.0	М		C	c	С	WC	VC	VC	300
	7.0 8.0	\vdash	-	\vdash	-	-	-	-	-		7.0 8.0		г			М		_			M	M	C	_	7.0 8.0	М	c	c	C	C	VC VC	c	С	VC
	15	м	м	м				С	С	VC	1.5	_	XC	VC		XC	VC	VC		XC	XE	ХC	XXC	VC	15	XE	•	•	_	-		_	UC	UC
	2.0	F	F	м			м	С	С	С	2.0	UC	VC	VC	VC	VC	VC	VC		VC	ЖE	ЖE	7	VE	2.0	VC						UC	UC	UC
	3.0	F	г	м	not	not	м	М	М	С	3.0	VC	С	С	C	С	С	С	not	VC	C	VC	WC	C	3.0	С	VC	WC	not		VC	ЖE	XC	UC
ULAC	5.0	r	г	r	available in this	available in this	м	M	м	M	4.0 5.0	м	M	C M	C M	M	C M	C M	available in this	C	C M	C	7		4.0 5.0	C M	VC VC	C	ovaliable in this	VC VC	VC VC	XC VC	VC VC	XC
Line	6.0	\vdash	_	-	nizo	stre	\vdash	-	-	м	6.0	м	м	M	M	м	м	M	nizo	м	м	č	c		6.0	M	c	-	nizre	WC	VC	VC	VE	XC
	7.0										7.0	М	м			м			1		м	С	С		7.0	м	c	С		VC	VC	С	С	30C
	8.0										8.0	М									М		С		8.0		С	C		WC	WC	С		
	2.0	м	M	M	- C	c	С	C	VC C	C	1.5	VC	XC	VC VC	VC	NC.	AC.	WC WC	C	XC VC	XE.	XC	7	VC VC	1.5	NC NC	\vdash		_	_		UC	UC	UC
	3.0	-	-	M	M	м	м	è	м	è	3.0	-	VC	C	C	VC		E .	-	VC	G	VC	WC	C	3.0	VE	VC	XC	WC		VC	XC	UC	UC
03	4.0	F	F	М	м	м	м	М	м	м	4.0	М	C	C	C	C	м	C	М	C	C	C	VC		4.0	C	VC	VC	WC	VC	VC	WC	XIC	UC
BLUE	5.0			М	М			М	М	М	5.0	М	м	М	С	М	м	С	М	С	М	С	WC		5.0	C	VC	С	WE	С	VC	VC	Ж	UC
	7.0	<u> </u>	-	\vdash	r	_	-	-	м	м	7.0	М	M	М	M	M	м	м	r	м	M	C	7		6.0 7.0	м	C	C	VC VC	C	VC VC	WC	VC VC	XC XC
	8.0	\vdash	_	\vdash	\vdash	 	_	_	_		8.0	M	~		PR	- M					м	-	-		8.0	86	-	-	-	-	VC	c	~	
	1.5	м	м	м	c			С	VC	VC	1.5		UC	VC		XC	VC	VC	WC	XC	UC	ЖC	XXC	VC	15	uc							UC	UC
	2.0	м	м	М	C	С	WC	С	С	С	2.0	VC	ЖE	WC	WC	VC	С	VC	С	XC	UC	VC	300	С	2.0	XE						UC	UC	UC
	3.0	м	м	M	c	м	С		C	С	3.0	C	VC	WC		С	С	VC.	c	VC	UC		300	С	3.0	VC	XC	XC	not		WC	XC	UC	UC
RED	5.0	r	F	M	M	м	м	C M	M	M	4.0 5.0	M	VC C	C	C	M	M	C	M	VC C	XE	C	7 VC		5.0		VC VC	VC VC	ovaliable in this	VC VC	VC VC	VC VC	XC	XC
	6.0				M				м	м	6.0	м	è	М	М	м	м	è	м	è	VC	č	7		6.0	м	WC	VC	nizre	WC	VC	VC.	VC	XC
	7.0										7.0	М	М			М					c	C	С		7.0	М	С	WC		C	VC	C	VC	XC
	8.0										8.0	М									С		С		8.0		С	VC		С	WC	E		
	2.0	M	M	C		-		c	VC	VC C	1.5		UC	XC	100	XC	VC C	WC.	WC	NC NC	UC	XC	300	VC C	1.5 2.0	NC NC	\vdash			_				UC
	3.0	M	M	M		c		C	VC C	6	2.0 3.0	VC C	XC XC	VC VC	VC C	VC C	6	VC VC	VC C	XC VC	XC	XC VC	XC XC	c	3.0	VC	XC	XC			VC	XC	UC	UC
05	4.0	м	F	M	data not	м	data not	č	č	м	4.0	м	VC	C	è	è	м	c	è	VC	XE	c			4.0	VE	XC	XC	not ovaliable	not available	VC	VC	Ж	UC
BROWN	5.0			м	avallable		ovaliable	С	М	м	5.0	М	С	С	М	С	м	С	М	С	VC	С	WC		5.0	C	WC	VC	in this	In this	VC	VC	Ж	UC
	6.0	<u> </u>	_	\vdash			1		М	М	6.0	м	C	М	М	М	м	C	М	C	VC	-	WC	_	6.0	М	VC	VC	1019	sizo	VC	VC	VC.	XC
	7.0 8.0	\vdash	-	\vdash		-		_	-	\vdash	7.0 8.0	м	С			м					c	-	VC C		7.0 8.0	М	VC VC	VC		 	VC VC	VC.	VC	XC
	10.57										10.00														10.00		- 10				100			

Figure 2: Percentage of driftable fines

produced with various adjuvants Using an Airmix 02 nozzle @ 3.5 bar



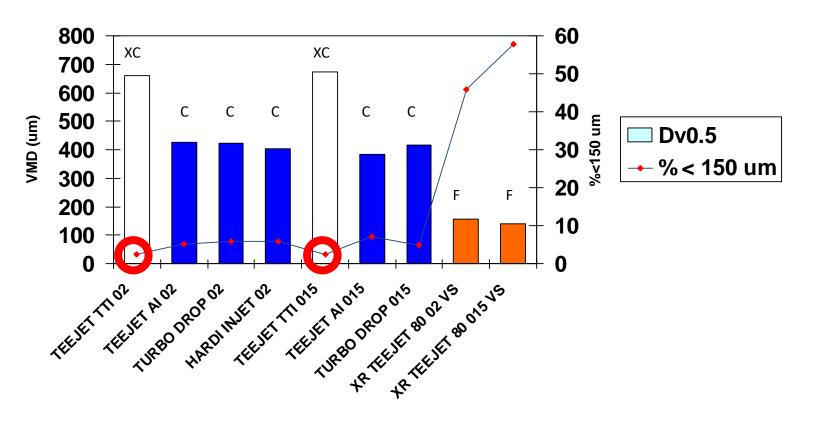

Figure 2: weedmaster DST rate 1.0L/ha 80L water/ha Source: Uni QLD, Gatton 2012.

Nozzle selection with 2,4 D – low pressure

Tank mix - 0.5% 2,4 D – 9 kph wind speed

2.75 bar pressure

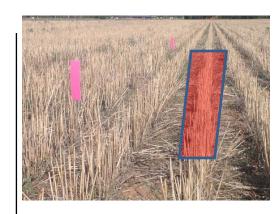
Source: C-PAS GRDC Project UQ 00032



Nozzle selection with 2,4 D - higher pressure

Tank mix - 0.5% 2,4 D – 9 kph wind speed

Grow a better tomorrow.

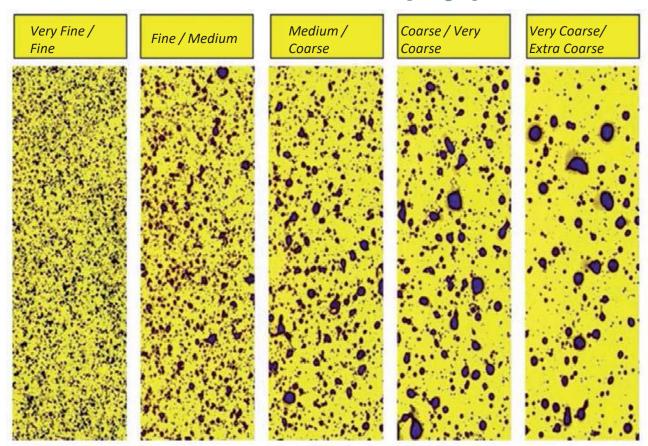

5.0 bar pressure

Source: C-PAS GRDC Project UQ 00032

Results from a single trial evaluating spraying speed and nozzle type on Glyphosate efficacy in a standing stubble

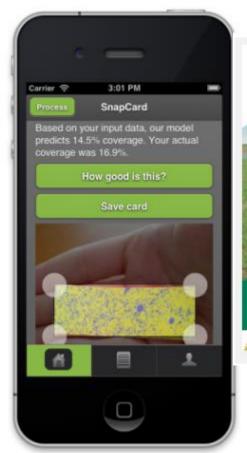
(Awnless Barnyard Grass & other summer weeds) Narrabri - 2014

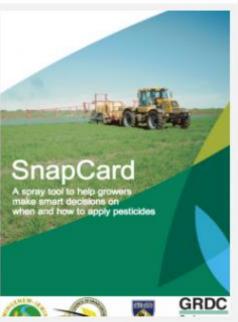
	Strip length 1	66m >	North ↑	wind dire Direction Subsampl	of sprayer	r travel ←	↓ spacing 33 cn
Strip 7			UTC				
Strip 6	6		5 TTJ60 025 27 kph	4	3	2	1
Strip 5	6		5 AIXR 025 27 kph	4	3	2	1
Strip 4	6		5 TTI025 27 kph	4	3	2	1
Strip 3	6		₅ TTJ60 20 kph	4	3	2	1
Strip 2	6		5 TTI 02 20kph	4	3	2	1
strip 1	6		5 AIXR 02 20 kph	4	3	2	1


Summary of speed and nozzle effects

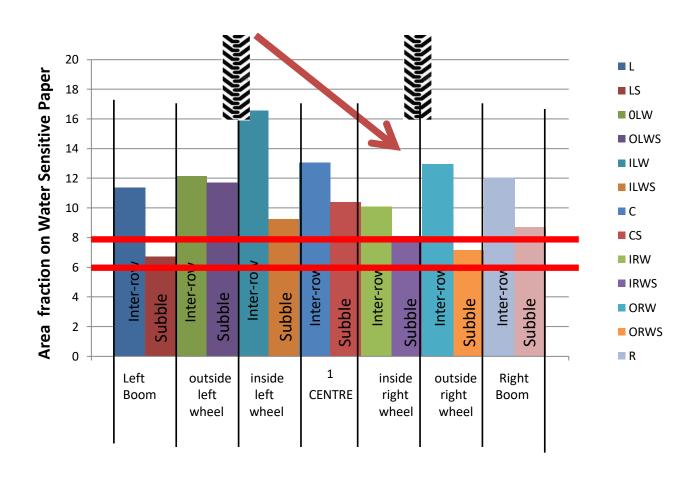
• Spraying at 27 km/h resulted in a 9.4% reduction in efficacy in the centre of the sprayer for all nozzles (compared to 20 km/h)

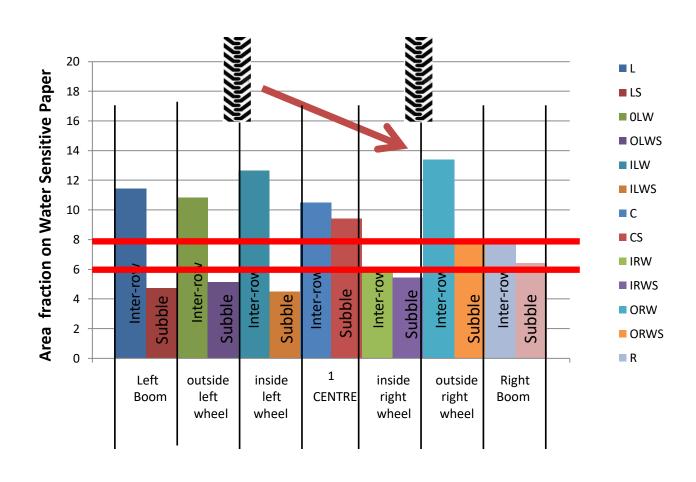
• TTI nozzles (XC) resulted in a 10-12% overall reduction in efficacy at either speed (at the rate of Glyphosate actually used).

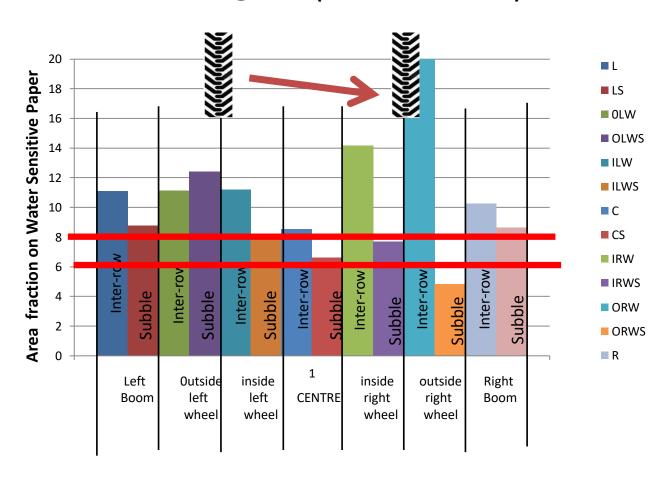

When using larger droplets assess spray coverage and monitor efficacy


Coverage on Water Sensitive paper at the same application volume with different spray qualities

Snapcard App






18 km/h, 60 L/ha, 50cm spacing AIXR 02 @ 4 bar (small end of Coarse)

26 km/h, 60 L/ha, 25cm spacing AIXR 015 and 02 @ 2.5bar (very coarse)

31 km/h, 60 L/ha, 25cm spacing AIXR 015 and 02 @ 4 bar (small end of coarse)

Penetration and coverage in a late canola canopy (e.g. fungicide application)

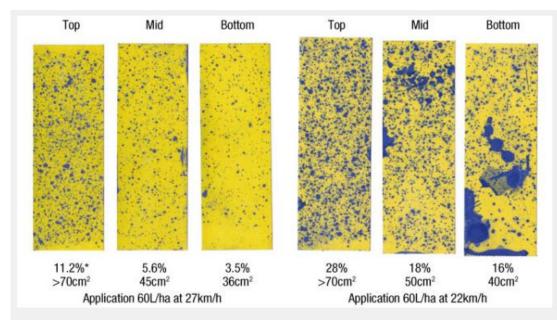
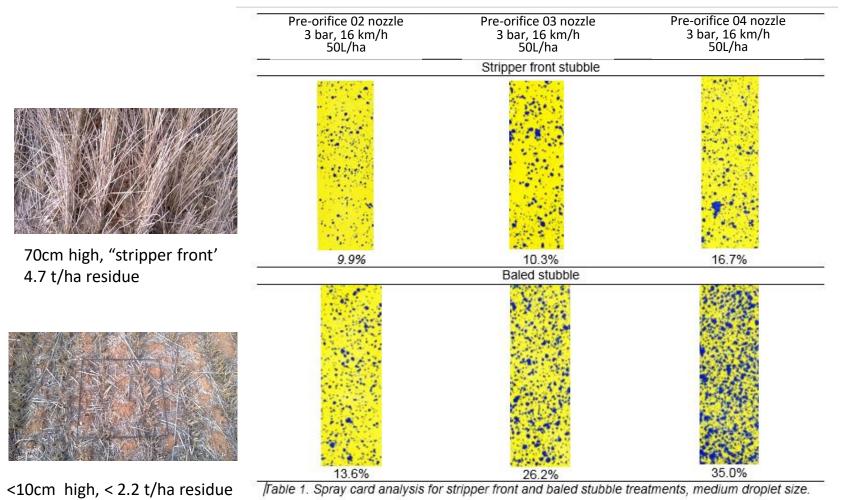



Figure 2 Deposits onto WSP cards at three locations in the canopy (top, mid and bottom).

SOURCE: Bill Campbell

Same application volume, but a reduction in spraying speed, and a minor change in spray quality have made a big difference to the penetration and coverage.

Impact of droplet interception on coverage due to different stubble heights

Information from the Hart field site group, trials on stubble penetration and pre-emergent efficacy (S.A. 2015-2016, funded by SAGIT) images by Dr Sarah Noack

Top Ten Tips for reducing spray drift

- Choose all products in the tank mix carefully, this includes the choice of active ingredient, the formulation type and the adjuvant used.
- Understand the products mode of action and coverage requirements
- Select the coarsest spray quality that will provide an acceptable level of control (& check the spray coverage).
- Always expect that surface temperature inversions will form later in the day, as sunset approaches, and they are likely to persist overnight and beyond sunrise on many occasions
- Use weather forecasting information to plan the application.

Top Ten Tips for reducing spray drift

- Only start spraying after the sun has risen more than 20 degrees above the horizon and the wind speed has been above 4-5 km/h for more than 20-30 minutes, with a clear direction that is away from adjacent sensitive areas.
- Set the boom height to achieve double overlap of the spray patterns.
- Avoid high spraying speeds, particularly when ground cover is minimal.
- Be prepared to leave unsprayed buffers
- Continually monitor the conditions at the site of application.

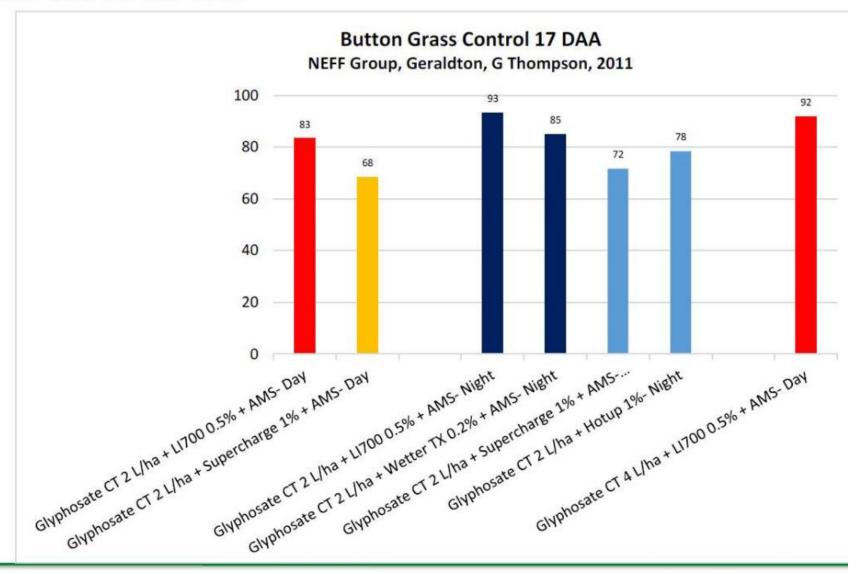
Thanks for Listening.

ANY QUESTIONS?

For further information contact
Bill Gordon – Spray Application Specialist, Nufarm Australia
bill.gordon@nufarm.com

Or your local Nufarm Representative.

Examples of coverage from Demo's


Coomandook Demo			Trailing Stoll			5	0 cm nozzle sp	acing		
·	Speed	L/Ha	Inter-row	Ва	se of Stubl	ole	Spray Quality	Pressure	Nozzle	
	14	70	6.6		5.5		C/VC	3.5 bar	AIXR 02	
	17	70	8		6		C/M	5.0 bar	AIXR 02	
Standing Stubble 20-30cm			RowGator			2	25 cm nozzle sp	acing		
20-300111	Speed	L/Ha	Inter-row	Ва	se of Stubl	ole	Spray Quality		Nozzle	
	20	70	9		6		VC/C	3 bar	Airmix 015	
	20	100	13		9		C/M	5.5 bar	Airmix 015	
Tintinara Demo		·	Hardi Trailing	i		5	0 cm nozzle sp	acing		
SLASHED stubble	Speed	L/Ha	top of stubble	Under stubble		le	Spray Quality	Pressure	Nozzle	
(>70% cover on	18	70	9		1.5		VC/C	5.5 bar	INJET 02	
ground)	14	100	15		3.5		VC/C	6.5 bar	INJET 02	
CTANDING CTURRIE	Speed	L/Ha	Inter-row	В	ase of Stub	ble				
STANDING STUBBLE 35-30 cm	18	70	7		3.3		VC/C	5.5 bar	INJET 02	
33-30 CIII	14	100	9		4		C/VC	6.5 bar	INJET 02	
CTANDING CTURDIC	Speed	L/Ha	Inter-row	В	ase of Stub	ble				
STANDING STUBBLE 35-30 cm	12	80	12		10		VC	3.5 Bar	INJET 02**	
33-30 CIII	12	80	10		7		C/M	3.5 Bar	MINIDRIFT	

^{**} at big end of VC retention on small rye grass will be low, less than half of this coverage will stay on the rye grass

Why specialty adjuvants with Glyphosate

Oils impede uptake of Glyphosate

